SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl-/HCO3- exchange, and is inhibited by NH4+.
نویسندگان
چکیده
HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in mouse stomach showed abundant expression of SLC26A9 in surface epithelial cells with apical localization on immunofluorescence labeling. Functional studies in HEK-293 cells demonstrated that SLC26A9 mediates Cl-/HCO3- exchange and is also capable of Cl--independent HCO3- extrusion. Unlike other anion exchangers or transport proteins reported to date, SLC26A9 activity is inhibited by ammonium (NH4+). The inhibitory effect of NH4+ on gastric HCO3- secretion was also indicated by reduced gastric juxtamucosal pH (pHjm) in rat stomach in vivo. This report is the first to describe the inhibition of HCO3- transport in vitro and the reduction of pHjm in stomach in vivo by NH4+. Given its critical localization on the apical membrane of surface epithelial cells, its ability to transport HCO3-, and its inhibition by NH4+, we propose that SLC26A9 mediates HCO3- secretion in surface epithelial cells and is essential for protection against acidic injury in the stomach. Disease states that are associated with increased ammonia (NH3)/NH4+ generation (e.g., Helicobacter pylori) may impair gastric HCO3- secretion and therefore predispose patients to peptic ulcer by inhibiting SLC26A9.
منابع مشابه
Coupling Modes and Stoichiometry of Cl−/HCO3− Exchange by slc26a3 and slc26a6
The SLC26 transporters are a family of mostly luminal Cl- and HCO3- transporters. The transport mechanism and the Cl-/HCO3- stoichiometry are not known for any member of the family. To address these questions, we simultaneously measured the HCO3- and Cl- fluxes and the current or membrane potential of slc26a3 and slc26a6 expressed in Xenopus laevis oocytes and the current of the transporters ex...
متن کاملIdentification of an apical Cl-/HCO3- exchanger in gastric surface mucous and duodenal villus cells.
The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transpo...
متن کاملDeletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach.
Slc26a9 is a recently identified anion transporter that is abundantly expressed in gastric epithelial cells. To study its role in stomach physiology, gene targeting was used to prepare mice lacking Slc26a9. Homozygous mutant (Slc26a9(-/-)) mice appeared healthy and displayed normal growth. Slc26a9 deletion resulted in the loss of gastric acid secretion and a moderate reduction in the number of ...
متن کاملGeneration and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels.
Recent studies identified the SLC26A9 Cl(-) channel as a modifier and potential therapeutic target in cystic fibrosis (CF). However, understanding of the regulation of SLC26A9 in epithelia remains limited and cellular models with stable expression for biochemical and functional studies are missing. We, therefore, generated Fisher rat thyroid (FRT) epithelial cells with stable expression of HA-t...
متن کاملCharacterization of Cl-HCO3 exchange in basolateral membrane of rat distal colon.
Sodium-independent Cl movement (i.e., Cl-anion exchange) has not previously been identified in the basolateral membranes of rat colonic epithelial cells. The present study demonstrates Cl-HCO3 exchange as the mechanism for 36Cl uptake in basolateral membrane vesicles (BLMV) prepared in the presence of a protease inhibitor cocktail from rat distal colon. Studies of 36Cl uptake performed with BLM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 2 شماره
صفحات -
تاریخ انتشار 2005